ml:ﬂEL Micrel Switch Usage Guide

Micrel Switch Usage Guide

Rev 1.0

October 30, 2014

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 1

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

Table of Contents

I REVISION HISOTY....uviiiiiiiieiie ettt ettt ette et e et e et e e et e e easeeensseeennsssaeaeeansssneeaeeanes 4
2 TELOAUCTION. ...ttt ettt et a ettt e bt e bt e st e s bt e bt eatesbeenbeentesaeenbeenteeenee 5
3 OVETVICW. ..ttt ettt ettt et ettt et e ettt et e e bt e et e e e he e e ab e e sae e e et e e s bt eabeeeaeeea bt e eabeeabeesabeenbeeenbeebeeennbeeas 5
4 Software Driver Implementation............ccuveriieiierieeiieeie ettt ereeseee s ebaeeennaeeeennneees 5
4.1 Distributed Switch ATChItECTUIE.coiiiiiiiii i 6

5 Host Network Driver ModifICations........coc.evierieriiriinieeieiiesieee sttt st 6
O SWILCRH APIS ..ottt ettt e et e st et e ne e st nteeneenaeenneenee 10
6.1 Data Structures and DefinItions..........coeeuirierierierieneeieeecee et e 10
6.2 SWILCh FUNCHONS.viiiiiiicciie ettt et ee et e e stte e et eeeaaeeetaeessaeesnssaeeeeennnns 15
6.2.1 SW_SCLUP SPECIAL...utiiiiiiiiiiieeieeie ettt ettt et e et e e e e taeeeennaee s 16

6.2.2 SW_SCLUP AEV..eeuiiiiiiieeiiiieeiiee ettt e et e et e st e e st e estteaessaeeessaeessaeasssaeaeeeennssneaeeeenssees 17

LI I N v 1 F TR RUPPPUPPR 18

(O B 70 o SRR 18

0.2.5 SW_OPCIN AOV...eiiiiiiiiieiiieiie ettt ettt ettt e te et e e bt e teeebeesaaeenbeestteenbaenaraeeenbaaeeanraeas 19

6.2.6 SW_OPECIN POTT.uiiiiiiiieiiieeetiee ettt ettt et ettt e e sttt e et e e sbeeeebb e e s bt e e e bbbt e e eeaanbateeeeenaeeeeas 19
0.2.7 SW_ClOSE POTL...eieiiiiieiiiieiieeieeite ettt ete et e st e e bt e e aeesbeesaaeesseessseesseensseensaennsseeanseeens 19
(O B ¢ 0 1) s FO USSP 20

0.2.9 SW_ClOSEC....utiiiiiieiiecit ettt ettt ettt sttt e et e et e et e et e et e e taeenta e e e ennteeeentteeennraeens 20
6.2.10 SW_Set MAC AdAL......ccciiiiiiiieiie e e e e e e a e e e e eenes 20
0.2.11 SW_GEE X LOMN..ciiiiiiiieiieie ettt ettt ettt e e enree s 21
6.2.12 SW_add a1l TAZ....uviiiciiieiiie et e e e e et e e e aaeaeaeenn 22
6.2.13 SW_Et A1l TG . cciiiiiieiieiieee et et nnaeenree s 22
6.2.14 SW_CRECK TX..uuiiiiiiiieciie ettt ettt e et e e st e e site e e sbeeesbeeeeesnnsaaeeeeannnns 23
6.2.15 SW_TINA1 SKD...ouiiiiiiiiiiice e et 23
0.2.160 SW_TX A@V.uiiiiiiieeiie ettt ettt e et e et e et e e e saeestaeesataeeesaee e sraeesaeeesaaeanns 24
6.2.17 SW_MAtCh PKE...eiiiiiiiiieiieiee e et 24

6.2. 18 SW_PATEIE TXutiiuiiieiiiieiitteiite ettt ettt ettt e ettt e ettt e sttt e st e e s bt e e sabeeesabeeeeeesbbbeeeeseaneeees 26
6.2.19 SW_POTt VIAN TXouiiiiiiiiiiiiiiieiiecie ettt ettt ettt et eesteeesbe e saeenneeeennseeas 26
6.2.20 ZEE POTT STALE.....eeiiuiiiiiiieiiiee ittt ettt et e et e ettt e e e et e e e e eaneeeee 27
6.2.21 SW_ZEL PIIV_STALC....eeiiieitiieiieiieiieeteeeie et e ete e bt e s eeebeesaaeenbeesseeesbeessseensaenssaeeenseeens 28
6.2.22 SW_SCL PITV_SEALE....eetiiiuiieiieeiie ettt ettt ettt et e et e bt e st e e e snteeeeeateeeennneeaas 28
6.2.23 SW_SET MU .cc.tiiiiieiieeiieiieee ettt ettt ettt e e saeeebeesaeeabeeaeeesseesaeensseeas 29
0.2.24 SW_SED IXuttiiiiiieeeiiiieeeeitieeeeettee e e sttt e e e estaeeeeeabaeeeeataeee e e nbtaeeeanbaeeeeanbaaeeeantteeeeannnnan 29
6.2.25 SW_DIOCKEA IX..uviiiiiiiiiiiiieiieeie ettt et ettt e ennee s 30
6.2.206 MNONITOT POTES....veeeurieeierieeieieeeiteeeetteeeteeesseeesseeessseeassseeasssaeassseessssseeesssssssseeesssnsssees 31
6.2.27 INIE SW_ SYSTS ittt ettt ettt e et e e eebeesaa e e senbaeeeennaeeeanneeas 31
6.2.28 X1t SW_ SYSES..iiiiiiiiiiiiiiie et et e e e rr e e e e e e s baeennaaeennn 31

0.3 PTP FUNCLIONS. ...c..iiiiiiiiiieieeitect ettt sttt ettt e st e et e e 32
LT 0 B 013 o T 4V PP RTUPSRUPRN 32

0.3.2 PP CXIbeeuiieiieeiieeieeeie et e et te et e et e eteesteeebeeette e beeetaeeabe e st e e be e saeenbeeteeenbe e taeenbeeeennreeas 34

© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 2

http://www.micrel.com/

ml :ﬂEL Micrel Switch Usage Guide

LT NG I 015 o T 71 A T R TR PRSP 34
(O I o 1 o Y 0] o P PPPPPRPPR 34
6.3.5 PP _SEE IA@NEILY..c.uiieiiieiiieiieiie ettt ettt ettt et e et e e et e e e etbeeeeneaee s 35
6.3.6 ChECK PP IMNISE.iiiiieiiieeiie ettt et e e tae e et e e st e e s seeesnseeesnnsaaeeeeennns 35
6.3.7UPAALE PP IS ..nviieiiieiieeiiieiieeitertte et ett e et et eeeteettestteebeessaeenseessseenseessseenseeenseenseeas 36
(O IR oL A v G 11 71101 o JO PSSP 37
(O R I A o G 1171111 o SO PSPPI 37
6.3.10 hWSTAMP TOCTL..ceiuiiieiiieeiiie et e e e e et e e e e e s nraaeaeeeennneeeas 37
L B o1 o I (5 (<o PO O PP 38
(O 20 0 o3 (o Yol o] 1 o JE 1112 USRS 39
6.3.13 PP _ATOP PKEe.eeiiiiieie et et ennes 39
(O T s 5 A o 1) {0 TSRS 40
6.3.15 SEE X INT0.ccueieiiiieiiecie e et ae e enneeas 40
6.3.160 INT PIP SYSTS. ottt eee et e e e e et e et a e e e ra e e s baeeanraeennnns 41
0.3.17 XUt PP SYSTSiieitiiiiieiie ettt ettt ettt et ae et e e enree s 41
7 Hardware LIMITAtIONS. ...c.ueeruieiiieiie ettt ettt sttt ettt esat e e e enbeeesenbeeeeaneeeas 42
8 RSTP DACIMIOMN.eiuiiiiiiiiieiie ettt ettt et ettt ettt e bt sat e et st e e bt e saneenees 42
© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 3

http://www.micrel.com/

ml:ﬂEL Micrel Switch Usage Guide

1 Revision History

Revision | Date Summary of Changes
1.0 10/30/2014 Initial revision.
© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 4

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

2 Introduction

This document describes how to modify the host network driver to support using the features of
the Micrel switches. The supported switches are KSZ8463, KSZ8863/73, KSZ9566/7 and
KSZ9897 equivalents. Most of the switch drivers are implemented as Linux SPI drivers, but 12C
drivers are also available if needed.

3 Overview

The Micrel switch is usually connected to a MAC controller through a MII/RGMII interface.
From the MAC controller point of view it can be just a PHY. Therefore the switch device is
implemented as a Linux phy device to the network driver. As the switch is actually accessed
through SPI or 12C rather than MIIM, the driver creates a virtual MDIO bus for the phy devices
to be created. The first PHY 0 is for the whole switch, PHY 1 is for port 1, PHY 2 for port 2, and
so on. The switch driver can also simulate the standard PHY registers if required, but that is
generally not needed if the provided APIs are used.

The first step to make the Micrel switch work is to make sure the MII interface is connected
correctly on the system board and the correct MII mode is used. The switch port connected with
that MII interface is generally the last port of the switch, and is called the host port.

4 Software Driver Implementation

The default operation of the switch driver is to act as a PHY to the host network driver. The only
functions provided then are to notify the host for link change and change all the port speed to a
specific one. The driver can report individual port speed, but the one got from the network driver
is the fixed one from the MII interface, as most network devices use that speed information to
program the registers for proper operation.

If that is the only requirement needed the network driver does not need much modification. For
some situations it requires each port to be treated as a network device. As the network devices
are created in the host network driver, it requires modifications to that driver to support these
special functions.

The simplest way is to make each port a network device. To act as a single unit a bridge needs to
be created to bind those network ports.

Each port is treated as a network device for use in STP application, but it is still preferred to have
a main device to run some other applications. In this case there is a main device for a whole

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA * (408) 944-0480 * http://www.micrel.com

Page 5

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

switch, and child devices for each port. A bridge is then created to run STP. There are some
issues in this method as the received frame is passed to both child and parent devices. The driver
tries to minimize these problems by passing only STP related frames to the child device.

There is a problem for Precision Time Protocol (PTP) support when using STP. As the PTP
event messages cannot be blindly forwarded by a software bridge, the standard software
operation does not work.

Some applications like to have the control to send packets to specific port but do not want a
bridge. In this case a virtual VLAN device is created for each port so the application has an
option to use the VLAN device or the main device. There is a performance hit to pass two
frames to both VLAN and main devices, so the driver only does this for certain situations, like
handling PTP message or MRP frames.

4.1 Distributed Switch Architecture

An alternate way is to use Distributed Switch Architecture (DSA), a network layer to utilize the
ports as network devices. It requires almost no modifications to the host network driver.
However, as the host network driver is impervious to a switch in being used, everything is
forwarded by software and the switch hardware is not utilized.

Micrel switches use a tail tagging feature to know the received port and specify the destination
port. Once enabled the tail tag is required in all frames to be transmitted. The DSA driver
automatically adds the steps to prepare a frame with proper tail tag when sent from DSA ports,
but if the host network driver needs to send frames through its main network device, it needs to
call the special tail xmit function to add a tail tag.

It requires modifying some kernel files related to DSA to add Micrel DSA support. The kernel
configuration CONFIG NET DSA TAIL TAG is defined when Micrel DSA support is
selected.

5 Host Network Driver Modifications

The Micrel switch driver is responsible for most of the network operations, but as it does not
really transmit and receive frames it requires modifications to the host network driver to help the
switch to achieve its goal.

The main switch code is in the file ksz_sw_*.c. The associated header is ksz_sw_*.h. The
switch drivers can be under different names depending on the switch chips.

The Micrel switch driver is most likely provided as a Linux SPI driver because SPI access is the
faster register access mode supported by the switch. One thing to note about the Linux SPI

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA * (408) 944-0480 * http://www.micrel.com

Page 6

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

driver model is that hardware register access can be interrupted by the kernel putting the access
function to sleep. Therefore hardware register access cannot be used directly in interrupt
context, and it requires workqueue to do most of the jobs.

The Micrel SPI switch driver can be run by itself as a driver module, but the driver code can also
be included in a host network driver directly so that the network driver has more control over the
switch functions. Either way the network driver has control over the switch through its provided
APIs.

As the Micrel switch implementation and DSA support share some common code it is better to
define this conditional to refer to either one:

#if defined(CONFIG_MICREL_SWITCH) || defined(CONFIG_NET_DSA_ TAG_TAIL)
t#tdefine HAVE_MICREL_SWITCH
#endif

To support hardware STP operation the appropriate switch specific STP configuration needs to
be enabled in the Linux kernel configurations first. Then the conditional CONFIG_KSZ_STP
needs to be defined in the host network driver. The kernel bridge private header needs to be
included.

#ifdef CONFIG_MICREL_SWITCH

#if defined(CONFIG_MICREL_KSZ8463 STP) ||
defined(CONFIG_MICREL_KSZ8863 STP) ||
defined (CONFIG_MICREL_KSZ9897 STP)

#define CONFIG_KSZ_STP

#endif

#ifdef CONFIG_KSZ_STP
#include <../net/bridge/br_private.h>
#endif

The file ksz_common. c needs to be included. It contains some common functions used by
Micrel drivers.

If the entire switch driver code is included as indicated in the kernel configurations, the
appropriate switch driver file is included. Otherwise only the switch header files are included.

#if defined(CONFIG_MICREL_KSZ8863_EMBEDDED)
#include “spi-ksz8863.c”

#elif defined(CONFIG_MICREL_KSZ8463_ EMBEDDED)
#include “spi-ksz8463.c”

#elif defined(CONFIG_MICREL_KSZ9897 EMBEDDED)
#include “spi-ksz9897.c”

#elif defined(CONFIG_HAVE_KSZ8863)

#include “ksz8863.h”

#include “ksz_sw.h”

#elif defined(CONFIG_HAVE_KSZ8463)

#include “ks846xReg.h”

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA * (408) 944-0480 * http://www.micrel.com

Page 7

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

#include “ksz8463.h”

#include “ksz_sw.h”

#elif defined(CONFIG_HAVE_KSZ9897)
#include “ksz9897.h”

#include “ksz_sw_9897.h”

#tendif

For DSA the number of ports has to be defined manually as it is not automatically determined for
now.

#ifdef CONFIG_NET_DSA TAG_TAIL
#define MICREL_MAX_PORTS 2

#ifdef CONFIG_HAVE_KSZ9897
#undef MICREL_MAX_PORTS
ttdefine MICREL_MAX_PORTS 6
#endif

#include “setup_dsa.c”
#endif

If the switch driver file is not included, then the header files ksz_sw_phy.h and
ksz_spi_net.h need to be included.

#if defined(HAVE_MICREL_SWITCH) && !defined(CONFIG_MICREL_SWITCH_EMBEDDED)
#include “ksz_sw_phy.h”

#include “ksz_spi_net.h”

#endif

Note the ksz_spi_net.h file contains the network driver private data structure. The host
network driver needs to modify its private data structure to integrate the variables defined in the
dev_priv structure. For simplicity it is referred to dev_priv as the network device private
data structure but the host network driver may use other names.

The file ksz_sw_sysfs_*.c can be included to provide user switch operations. More details
to use those operations are in the Micrel Switch Reference Guide or Micrel Switch Application
Notes.

#if defined(HAVE_MICREL_SWITCH) && !defined(CONFIG_MICREL_SWITCH_EMBEDDED)

#define USE_MIB

#if defined(CONFIG_HAVE_KSZ9897)
#include “ksz_sw_sysfs 9897.c”
ttelse

#include “ksz_sw_sysfs.c”
#endif

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 8

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

The ksz_sw_sysfs structure needs to be defined somewhere. During host network driver
initialization the init sw_sysfs function can be called to setup switch sysfs operations.
When the driver exits the procedure exit sw sysfs should be called to release resources.

When the switch driver is run as a module it already provides sysfs operations. The file location
isat /sys/bus/spi/devices/spi@.0/sw/. For network device the location is at
/sys/class/net/eth@/sw/.

The Micrel switch driver stores everything related to the switch in the ksz_sw structure. This is
defined inside the switch driver. For the host network driver to access this structure it needs to
go through the Linux PHY device model. The switch driver exposes each external port of the
switch as a PHY device and creates a MDIO bus named “spi_mii.@.” The PHY id 0 operates
over the whole switch, while PHY id 1 is port 1 and so on. To check whether the switch driver is
started correctly and so has created a MDIO bus, the host network driver needs to called the
kernel phy attach function to retrieve the main PHY device.

struct ksz_sw *check_avail switch(void)

{
char phy_id[MII_BUS_ID_SIZE];
char bus_id[MII_BUS_ID SIZE];
struct net_device netdev;
struct ksz_sw *sw = NULL;
struct phy_device *phydev = NULL;

snprintf(bus_id, MII_BUS_ID SIZE, “spi_mii.%d”, 0);
snprintf(phy_id, MII_BUS_ID SIZE, PHY_ID_FMT, bus_id, ©0);
phydev = phy_attach(&netdev, phy_id, ©, PHY_INTERFACE_MODE_MIT);
if (!'IS_ERR(phydev)) {

struct phy_priv *phydata = phydev->priv;

sw = phydata->port.sw;
phy_detach(phydev);
}

return sw;

}

The switch instance can be retrieved with above code and used throughout the host network
driver to access the switch functions.

Other places to add Micrel switch code are described in the sections below.

For DSA support only the file setup dsa. c needs to be included and the
micrel switch init function called to initialize the DSA system. The parameters
supplied are the main network device and phy device.

micrel_switch_init(&micrel_switch_plat_data, NO_IRQ, &dev->dev, &phydev->bus->dev);

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA * (408) 944-0480 * http://www.micrel.com

Page 9

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

6 Switch APlIs

6.1 Data Structures and Definitions

The switch driver uses the following defined data types in its data structures and functions:

Data types

u8 8-bit unsigned value.
S16 16-bit signed value.
ulé 16-bit unsigned value.
u32 32-bit unsigned value.
s64 64-bit signed value.
u6d 64-bit unsigned value.

The macro SW_D sometimes is used to represent the switch's default register access width: 8-bit,
16-bit, or 32-bit.

Only the data fields related to special switch operations are described in the following data
structures:

struct ksz_mac_table

u8 mac addr [ETH ALEN] MAC address.
ulé vid VLAN tag value.
ule fid Filter ID.

u32 ports Port membership.
u8 override:l Override field.
u8 use fid:1 Use FID field.
u8 valid:1 Valid field.

This structure is used to store the static MAC table entry. There are 8 static MAC table entries in
most of the Micrel switches such as KSZ8863. For PTP support extra entries are used for
software manipulation.

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 10

http://www.micrel.com/

MICREL

Micrel Switch Usage Guide

struct ksz_alu table

ul6o owner

Device ownership.

u8 forward

Forward rule.

u8 wvalid:1

Valid field.

This structure is used with the ksz mac_ table structure to specify the device ownership and

forward rule of the specific MAC address.

Forward rule

FWD HOST OVERRIDE

Frame is forwarded to host port with override.

FWD_HOST

Frame is forwarded to host port.

FWD_STP_DEV

Frame will be forwarded to STP device.

FWD_MAIN DEV

Frame will be forwarded to main device.

FWD_VLAN DEV

Frame will be forwarded to VLAN device.

struct ksz_vlan table

ule vid VLAN tag value.
ule fid Filter ID.

u32 member Port membership.
u8 valid:1 Valid field.

This structure is used to store the VLAN table entry. There are 16 entries in the switches like

KSZ8863.

struct ksz_port_ cfg

ule vid VLAN tag value.
ul6 member Port membership.
int stp_ state STP state.

This structure is used to store port configurations.

© 2014 Micrel, Inc.

Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 11

http://www.micrel.com/

MICREL

Micrel Switch Usage Guide

struct ksz_sw_info

struct ksz mac table
mac_ table[MULTI MAC TABLE ENTRIES]

Static MAC table entries.

int multi net

Network multicast addresses used

int multi sys

System multicast addresses used.

u8 blocked rx[BLOCK RX ENTRIES]
[ETH_LEN]

Blocked receive addresses.

int blocked rx cnt

Blocked receive addresses count.

struct ksz vlan table
vlan table[VLAN TABLE ENTRIES]

VLAN table entries.

struct ksz port cfg
port cfg[TOTAL PORT NUM]

Port configurations.

u8 br addr[ETH ALEN]

Bridge MAC address.

u8 mac_addr [ETH ALEN]

Switch MAC address.

u8 member

Current port membership.

u8 stp

STP port membership.

u8 stp down

STP port down membership.

u8 fwd ports

Number of ports to forward in STP operation.

This structure is used to store the hardware switch information.

struct ksz_port_info

uint state

Connection status.

uint tx rate

Transmit rate.

u8 duplex Duplex mode.
u8 port id Port index.
u8 mac_ addr [ETH ALEN] Port MAC address.

This structure is used to store the external port information.

struct ksz_sw _net ops

void setup special

void setup dev

© 2014 Micrel, Inc.

Confidential

Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 12

http://www.micrel.com/

ml :ﬂEL Micrel Switch Usage Guide

void start

int stop

void open_ dev

void open port

void close port

void close

void open

u8 set mac addr

int get tx len

void add tail tag

int get tail tag

struct sk buff *check tx

struct net device *rx dev

int match pkt

struct net device *parent rx

int port vlan rx

struct sk buff *final skb

u8 get port state

u8 get state

void set state

void set multi

int stp rx

int blocked rx

void monitor ports

This structure is used to provide function access to the switch. Three of the functions,
get port state,get state,and set state need user implementation.

struct ksz_sw

void *dev Pointer to parent hardware device.

void *phydev Pointer to PHY device interface.

struct ksz sw_info *info Pointer to switch information structure.

struct ksz port info Port information.

© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 13

http://www.micrel.com/

MICREL

Micrel Switch Usage Guide

port info[SWITCH PORT NUM]

struct net device
*netdev [TOTAL PORT NUM]

Pointer to network devices.

struct phy device
*phy [TOTAL PORT NUM]

Pointer to PHY devices.

int

dev _offset

Indication of a switch associated network device.

int

phy offset

Indication of the port associated PHY device.

struct ksz timer info
*monitor timer info

Timer information for monitoring ports.

struct work struct
*stp monitor

Workqueue for STP monitoring.

struct ksz sw net ops *net ops

Network related switch function access.

ul6 rx ports Bitmap of ports with receive enabled.

ul6 tx ports Bitmap of ports with transmit enabled.

int dev_count Number of network devices this switch supports.
u32 vlan id Used for the VLAN port forwarding feature.
ulée vid Used for the VLAN port forwarding feature.
int multi dev Used to specify multiple devices mode.

int

stp

Used to enable STP.

int

fast aging

Used to enable fast aging.

struct ptp info ptp hw

PTP data structure for used with PTP operation.

This structure is used to store the Micrel switch general information. Note the actual hardware
switch information is stored in the ksz_sw_info structure.

struct ksz_port

int first port Port index.
int mib port cnt MIB port count.
int port cnt Port count.

struct ksz sw *sw

Switch structure pointer.

struct ksz port info *linked

Linked port information pointer.

This structure is used to store the virtual port information. The virtual port can be a switch port,
or the whole switch. In the case of whole switch the linked port information pointer is
automatically assigned to the first switch port which has a link.

© 2014 Micrel, Inc.
2180 Fortune Dr., San Jose, CA 95131, USA * (408) 944-0480 * http://www.micrel.com

Confidential

Page 14

Rev 1.0

http://www.micrel.com/

ml :ﬂEL Micrel Switch Usage Guide

It is expected the host network driver has defined a variable called promiscuous to indicate
whether the network controller should be in promiscuous mode.

struct ksz_ptp ops

void init

void exit

int stop

struct ptp msg *check msg

int update msg

void get rx tstamp

void get tx tstamp

int hwtstamp ioctl

int dev _reqg

void proc_intr

int drop pkt

void get rx info

void set tx info

This structure is used to provide function access to the PTP engine. The two functions,
get clk cnt,and test access time canbe implemented to help calculate the register
access delay.

6.2 Switch Functions

All of the switch register access functions are accessed through the reg field in the switch
structure. The standard switch functions are accessed through the ops field. The network
related functions are accessed through the net_ops field. Only the network related functions
are described here.

Samples of register access functions are:

sw->reg->r8
sSw—>reg->w8
sw->reg->rlé6

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 15

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

sw—>reg->wl6
SwW—>reg->r32
SW—>reg->w32

Samples of standard functions are:

sw—>ops—->chk
sw—>ops—->cfg

Samples of network functions are:

sw—>net ops->open
sw->net ops->close

6.2.1 sw_setup_special

void sw_setup special (struct ksz sw *sw, int *port cnt, int
*mib port cnt, int *dev cnt);

Parameters |struct ksz sw *sw Switch instance.
int *port cnt Buffer to hold the switch port count.
int *mib port cnt Buffer to hold the switch MIB port count.
int *dev cnt Buffer to hold the network device count.
Return None.
Description This procedure determines the features of the
switch.

This procedure is used to determine the features and functions of the switch upon network driver
initialization. There are two things to decide how to run the switch: whether STP is enabled and
how the ports are used. The driver environment variable multi_dev selects the multiple
devices mode to use, and the variable stp enables STP support. In that case the multiple devices
mode is set automatically.

As the environmental variables can be set in different places it is necessary to set these variables
in the switch instance using the OR command:

sw->multi_dev |= multi_dev;
sw->stp |= stp;
sw->fast_aging |= fast_aging;

For STP operation it is also necessary to supply the get port state function as explained
later. Also the two functions get priv stateand set priv state need to be defined.

sw->net_ops->get_state = get_priv_state;

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 16

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

sw->net_ops->set_state = set_priv_state;

The port_cnt variable indicates how many ports in the switch; the mib_port_cnt, how many
ports with MIB counters information. Normally it is the same as port_cnt. The dev_cnt
variable indicates how many network devices to be created. They all need to be initialized to 1.
After the function call they will be updated to the proper numbers to be used in later network
device creation.

dev_cnt = 1;

port_cnt = 1;

mib_port_cnt = 1;

sw->net_ops->setup_special(sw, &port_cnt, &mib_port_cnt, &dev_cnt);

6.2.2 sw_setup_dev

void sw_setup dev (struct ksz sw *sw, struct net device *dev,
char *dev_name, struct ksz port *port, int i, int port cnt, int
mib port cnt);

Parameters | struct ksz_sw *sw Switch instance.
struct net device *dev Network device instance.
char *dev_name The first created network device name.
struct ksz port *port Port instance.
int 1 Device index.
int port cnt Port count.
int mib port cnt MIB port count.
Return None.
Description This procedure initializes the port instance.

This procedure initializes the port instance to proper port information such as port count and port
index. The created network device is also associated with the port. As explained before, each
network device has one port instance, in which one or several switch ports are associated.

dev_name[0] = '\0@';

for (i = @; i < dev_cnt; i++) {
dev = alloc_etherdev(sizeof(struct dev_priv));
priv = netdev_priv(dev);

phy_addr = i + sw->phy_offset;

snprintf(bus_id, MII BUS_ID SIZE, “spi_mii.%d”, 0);
snprintf(phy_id, MII_BUS_ID SIZE, PHY_ID_FMT, bus_id, phy_addr);
priv->phydev = phy_attach(dev, phy_id, 0, sw->interface);

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA * (408) 944-0480 * http://www.micrel.com

Page 17

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

priv->parent = sw->dev;

priv->dev = dev;

sw->net_ops->setup_dev(sw, dev, dev_name, &priv->port, i, port_cnt,
mib_port cnt);

if (!dev_name[@0])
strlcpy(dev_name, dev->name, IFNAMSIZ);

6.2.3 sw_start

void sw_start (struct ksz sw *sw, u8 *addr);

Parameters |struct ksz sw *sw Switch instance.

u8 *addr MAC address of the host network device.
Return None
Description This procedures setups the switch.

This procedure setups the switch with proper operation depending on the features selected. It
programs the switch source filter with the supplied MAC address to avoid forwarding its own
frames upon receiving. It is normally called once in the network device start function. It is
called by the sw_open dev procedure so that procedure can be used instead.

When PTP driver is used the ptp start procedure is called in this procedure.

6.2.4 sw_stop

int sw stop (struct ksz sw *sw, int complete);

Parameters |struct ksz sw *sw Switch instance.

int complete Flag to reset completely or not.
Return int The reset indication.
Description This function resets the switch.

This function is used to reset the switch to its default operation. It is normally called in the
network device stop function.

When PTP driver is used the ptp stop function is called in this function.

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 18

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

6.2.5 sw_open_dev

void sw open dev (struct ksz sw *sw, struct net device *dev, u8
*addr) ;
Parameters |struct ksz sw *sw Switch instance.

u8 *addr MAC address of the host network device.
Return None.
Description This procedures setups the switch.

This procedure operates the same as the sw_start procedure in addition to calling the
sw_init mib procedure to initialize the MIB counters. It should be called once in the
network device start function.

6.2.6 sw_open_port

void sw open port (struct ksz sw *sw, struct net device *dev,
struct ksz port *port, u8 *state);

Parameters |struct ksz sw *sw Switch instance.
struct net_device *dev Network device instance
struct ksz port *port Port instance.
u8 *state The STP state of the port
Return None.
Description This procedure setups the port instance.

This procedure setups the port instance and updates the port's STP state as necessary. The port
link speed will be retrieved and updated as necessary. It is called in the network device start
function after the sw_open dev procedure.

priv = netdev_priv(dev);
sw->net_ops->open_port(sw, dev, &priv->port, &priv->state);

6.2.7 sw_close_port

void sw_close port (struct ksz sw *sw, struct net device *dev,
struct ksz port *port);

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 19

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

Parameters |struct ksz sw *sw Switch instance.
struct net_device *dev Network device instance.
struct ksz port *port Port instance.
Return None.
Description This procedure shuts off the port if necessary.

This procedure is called in the network device stop function to shut off the port if necessary.

priv = netdev_priv(priv);
sw->net_ops->close port(sw, dev, &priv->port);

6.2.8 sw_open

void sw _open (struct ksz sw *sw);

Parameters |struct ksz sw *sw Switch instance.
Return None.
Description This procedure starts the switch monitor timer.

This procedure is called at the end of network device start function to start the switch monitor
timer.

6.2.9 sw_close

void sw_close (struct ksz sw *sw);

Parameters |struct ksz sw *sw Switch instance.
Return None.
Description This procedure stops the switch monitor timer.

This procedure is called at the end of the network device stop function to stop the switch monitor
timer.

6.2.10 sw_set_mac_addr

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 20

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

u8 sw_set mac addr (struct ksz sw *sw, struct net device *dev,
u8 promiscuous, int port);

Parameters struct ksz sw *sw Switch instance.

struct net_device *dev Network device instance.

u8 promiscuous The hardware promiscuous count.

int port The port index.
Return us8 The updated hardware promiscuous count.
Description This function updates the switch MAC address.

This function updates the switch when the host network device MAC address is changed. In
multiple devices mode each port may have its own MAC address. In that case the host network
device controller needs to be put in promiscuous mode for it to receive different unicast packets.
The returned hardware promiscuous count will tell the host controller whether to turn on
promiscuous mode or not.
priv = netdev_priv(dev);
promiscuous = hw->promiscuous;
promiscuous = sw->net_ops->set _mac_addr(sw, dev, promiscuous, priv->port.first_port);
if (promiscuous != hw->promiscuous) {

hw->promiscuous = promiscuous;

/* Turn of/off promiscuous mode. */

6.2.11 sw_get_tx_len

int sw get tx len (struct ksz sw *sw, struct sk buff *skb);

Parameters struct ksz sw *sw Switch instance.
struct sk buff *skb Transmit socket buffer.
Return int The required length to send to switch.
Description This function calculates the minimum length of
the frame to send to the switch.

This function should be called at the beginning of the network device transmit function to find
out the minimum length required to send the frame to the switch so that the network driver can
allocate additional resource.

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA * (408) 944-0480 * http://www.micrel.com

Page 21

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

6.2.12 sw_add_tail_tag

void sw_add tail tag (struct ksz sw *sw, struct sk buff *skb,
int port);

Parameters struct ksz sw *sw Switch instance.
struct sk buff *skb Transmit socket buffer.
int port Transmit port.
Return None.
Description This procedures adds a tail tag to send the
frame to specific ports of the switch.

This procedure is used to add the tail tag for sending the frame to specific ports..
When using DSA this procedure should be defined:

void net_add_tail tag(struct sk_buff *skb, struct net_device *dev, int port)
{

/* Get the sw pointer from private data or somewhere. */
sw->net_ops->add_tail_tag(sw, skb, 1 << port);

6.2.13 sw_get_tail_tag

int sw_get tail tag (u8 *trailer, int *port);

Parameters u8 *trailer The last byte of the frame.
int *port Buffer to to hold the receive port.
Return int Extra length that can be removed.
Description This procedures returns the extra length used
by the tail tag.

This function is used to find out how many extra bytes are used by the tail tag. Normally 1 byte

is used, but for PTP message 4 additional bytes are used to store the receive timestamp. The
receive port is also returned.

When using DSA this function should be defined:

int net_get tail tag(struct sk_buff *skb, struct net_device *dev, int *port)
{

u8 *trailer;
/* Get the sw pointer from private data or somewhere. */
© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 22

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

trailer = skb_tail pointer(skb) - 1;
return sw->net_ops->get tail tag(trailer, port);

6.2.14 sw_check_tx

struct sk buff *sw check tx (struct ksz sw *sw, struct
net device *dev, struct sk buff *skb, struct ksz port *priv);

Parameters |struct ksz sw *sw Switch instance.

struct net device *dev Network device instance.

struct sk buff *skb Transmit socket buffer.

struct ksz port *port Port instance.
Return struct sk buff *skb NULL if the socket buffer is deleted.
Description This functions checks transmit frame.

This function checks if the transmit frame should be dropped due to some switch limitations.
The frame also may be modified to prepare sending it to the switch. It is called in the network
device transmit function.

6.2.15 sw_final_skb

struct sk buff *sw final skb (struct ksz sw *sw, struct
net device *dev, struct sk buff *skb, struct ksz port *priv);

Parameters |struct ksz sw *sw Switch instance.

struct net _device *dev Network device instance.

struct sk buff *skb Transmit socket buffer.

struct ksz port *port Port instance.
Return struct sk buff *skb NULL if the socket buffer is deleted.
Description This functions checks transmit frame.

This function calls tail xmit function if DSA is used. Otherwise it calls sw_check txto
prepare the transmit frame.

When PTP driver is used the ptp get tx tstamp procedure is called to prepare the transmit
timestamp..

priv = netdev_priv(dev);

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 23

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

skb = sw->net_ops->final_skb(sw, dev, skb, &priv->port);

if (!skb) {
/* Free any resource allocated to transmit the frame. */
return 0;

}

6.2.16 sw_rx_dev

struct net device *sw _rx dev (struct ksz sw *sw, u8 *data, u32
*len, int *tag, int *port);

Parameters |struct ksz sw *sw Switch instance.

u8 *data Received frame data buffer

u32 *len

int *tag Buffer to hold the port tag.

int *port Buffer to hold the port index.
Return struct net_device *dev Returned network device instance.
Description This function determines the received port.

This function determines the received port from the tail tag at the end of the frame. It checks
whether the frame should be dropped depending on STP state of the port. After then it returns
the proper network device instance associated with the received port. The supplied tag and port
variables will be used in later function calls.

/* Allocate a socket buffer to retrieve the received frame data. */
dev = sw->net_ops->rx_dev(sw, skb->data, &len, &tag, &rx_port);
if (!dev) {

dev_kfree_skb_irq(skb);

return -ENODEV;

6.2.17 sw_match_pkt

int sw match pkt (struct ksz sw *sw, struct net device *dev,
void **priv, int (*get promiscuous) (void *ptr), int

(*match multi) (void *ptr, u8 *data), struct sk buff *skb, u8
h promiscuous);

Parameters |struct ksz sw *sw Switch instance.
struct net_device **dev Network device instance pointer.
© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 24

http://www.micrel.com/

ml :ﬂEL Micrel Switch Usage Guide

void **priv Private data pointer.
int (*get_promiscuous) Get private promiscuous state function.
(void *ptr)
int (*match_multi) (void Match multicast frame function.
*ptr, u8 *data)
struct sk buff *skb Received socket buffer.
u8 h promiscuous The hardware promiscuous count
Return int Indication of a match.
Description This function matches incoming destination
address.

This function is used to match unicast and multicast packets in case hardware promiscuous mode
is enabled. A get private promiscuous mode function and a match multicast frame function

should be provided.
static int priv_promiscuous(void *ptr)
{
struct dev_priv *priv = ptr;
return priv->promiscuous;
}
static int priv_match_multi(void *ptr, u8 *data)
{
int i;
struct dev_priv *priv = ptr;
int drop = false;
if (priv->multi_list_size)
drop = true;
for (i = 0@; i < priv->multi_list size; i++)
if (!memcmp(data, priv->multi_list[i], ETH_ALEN) {
drop = false;
break;
}
return drop;
}

priv = netdev_priv(dev);
if (!sw->net_ops->match_pkt(sw, &dev, (void **) &priv, priv_promiscuous,
priv_match_multi, skb, hw->promiscuous)) {

dev_kfree skb_irq(skb);

return 0;

}

/* dev may be changed to different one and then priv will be also updated. */

© 2014 Micrel, Inc. Confidential
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 25

Rev 1.0

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

6.2.18 sw_parent_rx

void sw parent rx (struct ksz sw *sw, struct net device *dev,
struct sk buff *skb, int forward, struct net device **pdev,
struct sk buff **pskb);

Parameters struct ksz sw *sw Switch instance.
struct net _device *dev Network device instance.
struct sk buff *skb Received socket buffer.
int forward Forward rules.

struct net device **pdev Buffer to hold the parent network device.

struct sk buff **pskb Buffer to hold the parent socket buffer.
Return None.
Description This procedure creates another copy of socket

buffer if necessary.

This procedure is used to create another copy of socket buffer for the parent network device if
necessary. It is called after the sw_stp rx function for the forward variable to be updated
first if STP is used.

int forward = 0;
struct net_device *parent_dev = NULL;
struct sk_buff *parent_skb = NULL;

sw->net_ops->parent_rx(sw, dev, skb, forward, &parent_dev, &parent_skb);

6.2.19 sw_port_vlan_rx

int sw_port vlan rx (struct ksz sw *sw, struct net device *dev,
struct net device *pdev, struct sk buff *skb, int forward, int
tag, void *ptr, void (*rx tstamp) (void *ptr, struct sk buff *skb)
) ;

Parameters | struct ksz_sw *sw Switch instance.
struct net_device *dev Network device instance.
struct net device *pdev Parent network device instance
struct sk buff *skb Received socket buffer.
int forward Forward rules.
int tag Port tag.
© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 26

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

void *ptr PTP pointer if used.
void (*rx_ tstamp) (void PTP receive timestamp function if used.
*ptr, struct sk buff *skb)
Return int Indication a socket buffer is passed to a VLAN
device.
Description This function creates a copy of socket buffer to

pass to a VLAN device if necessary.

This function checks whether a copy of received socket buffer needs to be passed to a VLAN
device so that application receives it knows which port the packet is received. Some of the
parameters are already determined in previous API calls.

int extra_skb;

void *ptr = NULL;

int *tag_ptr = NULL;

extra_skb = (parent_skb != NULL);

extra_skb |= sw->net_ops->port_vlan_rx(sw, dev, parent_dev, skb, forward, tag, ptr,
rx_stamp);

6.2.20 get_port_state

u8 get port state (struct net device *dev, struct net device
**pr dev);

Parameters |struct net device *dev Network device instance.

struct net_device **br_ dev |Buffer to hold the bridge network device.

Return u8 The STP state.
Description This function retrieves the STP state of the
port.

This function returns the STP state of the port associated with the network device and the pointer
to the bridge network device. As the code to get these information are different in many Linux

kernel version, it is necessary for the host network driver to define the function. A version for
Linux 3.3 is provided.

static u8 get_port_state(struct net device *dev, struct net_device **br_dev)

{
struct net_bridge_port *p;
u8 state;

/* This state is not defined in kernel. */
state = STP_STATE_SIMPLE;
if (br_port_exists(dev)) {

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 27

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

p = br_port_get rcu(dev);
state = p->state;

/* Port is under bridge. */

*br_dev = p->br->dev;

}

return state;

6.2.21 sw_get_priv_state

u8 sw _get priv state (struct net device *dev);

Parameters |struct net device *dev Network device instance.

Return u8 STP state of the device.

Description This function returns the STP state of the
network device.

This function returns the STP state of the network device. As the private data stored in the
network device are different in each host network controller, it is necessary to define this
function in the host network device driver and pass it to the switch structure during switch
initialization.

static u8 get priv_state(struct net_device *dev)

{

struct dev_priv *priv = netdev_priv(dev);

return priv->state;

6.2.22 sw_set priv_state

void sw_set priv state (struct net device *dev, u8 state);

Parameters |struct net device *dev Network device instance.
u8 state STP state of the network device.
Return None.
Description This procedure sets the STP state of the
network device.

This procedure is used to set the STP state of the network device.

static void set_priv_state(struct net_device *dev, u8 state)

© 2014 Micrel, Inc. Confidential
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 28

Rev 1.0

http://www.micrel.com/

ml :ﬂEL Micrel Switch Usage Guide

struct dev_priv *priv = netdev_priv(dev);

priv->state = state;

6.2.23 sw_set _multi

void sw_set multi (struct ksz sw *sw, struct net device *dev);

Parameters |struct ksz sw *sw Switch instance.
struct net_device *dev Network device instance.
Return None.
Description This procedure stores the multicast addresses to
be accepted.

This procedure is used to remember which multicast addresses are accepted to the host controller
so that the switch can filter those addresses as promiscuous mode is used. It is called within the
network device set receive mode function.

struct dev_priv *priv = netdev_priv(dev);
int flags = dev->flags;
int multicast = (dev->flags & IFF_ALLMULTI);

if (sw->dev_count > 1) {
if ((flags & IFF_MULTICAST) && !netdev_mc_empty(dev))
sw->net_ops->set_multi(sw, dev);
priv->multi_list_size = 0;

/* Do not update multi_list_size. */
if (flags & IFF_ALLMULTI)
flags &= ~IFF_MULTICAST;

/* Turn on all multicast. */
multicast |= (dev->flags & IFF_MULTICAST);

6.2.24 sw_stp_rx

int sw stp rx (struct ksz sw *sw, struct net device *dev, struct
sk buff *skb, int port, int *forward);

Parameters |struct ksz sw *sw Switch instance.

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 29

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

struct net device *dev Network device instance.
struct sk buff *skb Received socket buffer.
int port Receive port.
int *forward Buffer to hold the forward rule
Return int Error code.
Description This function determines whether to accept the
received frame or not.

This function determines whether to accept the received frame or not when STP is used. If
accepted the forward rule will be retrieved from the stored MAC table. With exceptions for
special MAC addresses stored in the hardware MAC table, all other addresses will be
remembered so that the frame can be blocked when the STP daemon forwards it to the other
ports.
if (sw->net_ops->stp_rx(sw, dev, skb, rx_port, &forward)) {
if (!forward) {
if (!sw->net_ops->blocked_rx(sw, skb->data))
printk(“rxd%d=%02x:%02x:%02x:%02x:%02x:\n",
rx_port,
skb->data[@], skb->data[1],
skb->data[2], skb->data[3],
skb->data[4], skb->data[5]);
dev_kfree_skb_irq(skb);
return 0;

6.2.25 sw_blocked_rx

int sw _blocked rx (struct ksz sw *sw, u8 *data);

Parameters |struct ksz sw *sw Switch instance.
u8 *data Destination MAC address.
Return int Error code.
Description This function checks the blocked address is in
the database or not.

This function checks whether the blocked address is in the database or not. It is used for debug
purpose only.

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 30

http://www.micrel.com/

Micrel Switch Usage Guide

MICREL

6.2.26 monitor_ports

void monitor ports (struct ksz sw *sw);

Parameters |struct ksz sw *sw Switch instance.

Return None.

Description This procedure monitors the switch ports.

This procedure monitors all the switch ports which are under the control of STP and shuts off the
port as necessary depending on its STP state. It is called by a monitor timer which is started by
the sw_open procedure. If STP is not enabled then this procedure will not be called and the
timer will not be renewed.

6.2.27 init_sw_sysfs

int init sw sysfs (struct ksz sw *sw,
struct device *dev);

struct ksz sw sysfs *info,

Parameters |struct ksz sw *sw Switch instance.
struct ksz_sw_sysfs *info |Switch Sysfs instance.
struct device *dev Device pointer.
Return int Error code.
Description This function setup the PTP Sysfs variables..

This function is used to setup the switch Sysfs variables so that some switch features can be

accessed from user space. The ksz sw_sys structure needs to be defined somewhere, as there

can be more than 1 instance. The device used can be network, SPI, or I2C device.

err =

6.2.28

void exit sw sysfs

*info,

init_sw_sysfs(sw, &sw_sysfs, &dev->dev);

exit_sw_sysfs

(struct ksz sw *sw,
struct device *dev);

struct ksz sw sysfs

Parameters

struct ksz sw *sw

Switch instance.

struct ksz sw sysfs *info

Switch Sysfs instance.

© 2014 Micrel, Inc.

Confidential

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 31

Rev 1.0

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

struct device *dev Device pointer.
Return None.
Description This function removes the PTP Sysfs
variables..

This procedure is used to remove the switch Sysfs variables when the network driver exits.

exit_sw_sysfs(sw, &sw_sysfs, &dev->dev);

6.3 PTP Functions

Some switches have 1588 PTP capability, and so a PTP driver is provided and it has its own set
of API functions. The driver is included in the switch driver and so some of the PTP functions
are called inside the switch driver code. Nevertheless the PTP driver still needs the host network
driver to implement some code to support its operation.

The PTP driver code is included when the configuration CONFIG 1588 PTP is defined. If
PTP function actually exists the switch's feature set will include it. This is indicated by the
PTP_HW bit in the switch features variable. The ptp hw structure holds all the information
necessary for PTP operation.

All of the PTP register access functions are accessed through the reg field in the PTP structure.
The standard PTP functions are accessed through the ops field. Only the standard functions are
described here.

Samples of register access functions are:

ptp->reg->read
ptp->reg->write

Samples of hardware access functions are:

ptp->reg->start
ptp->reg->get time
ptp->reg->set time

Samples of standard functions are:

ptp->ops->init
ptp—->ops—->stop

6.3.1 ptp_init
void ptp init (struct ptp info *ptp, u8 *mac addr);

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 32

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

Parameters struct ptp info *ptp PTP instance.
u8 *mac_ addr The host MAC address.
Return None.
Description This procedure initializes the PTP system.

This procedure is used to initialize the PTP system upon network driver initialization. The host
MAC address is used to set the PTP identity for debug purpose only. There are several
procedures to define first if the system can support them.

u32 get_clk_cnt(void)
{

/* Used with system bus_clock to provide time in microseconds. */
return KS_R(KS8692_TIMER1_COUNTER);

}

void test_access_time(struct ptp_info *ptp) {
/* Find out the average read and write register delays. */
ptp->get_delay = 100000;
ptp->set_delay = 100000;
if (ptp->get_delay < 10000)
ptp->delay_ticks = 10 * HZ / 1000;
else
ptp->delay ticks = 20 * HZ / 1000;
}

The get clk cnt function returns clock in microsecond resolution to help better determine
the delay in accessing PTP registers. The test access time procedure uses the PTP read
time and set time functions to find out the average delay in accessing PTP registers. Faster
access allows the PTP stack to process more Sync messages in higher transmit rate. Otherwise
the stack needs to drop some of the Sync messages to avoid blocking the whole PTP
synchronization.

if (sw->features & PTP_HW) {
struct ptp_info *ptp = &sw->ptp_hw;

ptp->test_access_time = test_access_time;
ptp->get_clk_cnt = get_clk_cnt;
ptp->clk_divider = system_bus_clock;

ptp->ops->init(ptp, mac_addr);

if (sw->features & VLAN_PORT)
ptp->overrides |= PTP_PORT_FORWARD;

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 33

http://www.micrel.com/

ml :ﬂEL Micrel Switch Usage Guide

6.3.2 ptp_exit

void ptp exit (struct ptp info *ptp);

Parameters struct ptp info *ptp PTP instance.
Return None.
Description This procedure initializes the PTP system.

This procedure is used to free up PTP resources when network driver exits.

if (sw->features & PTP_HW) {
struct ptp_info *ptp = &sw->ptp_hw;

ptp->ops->exit(ptp);

6.3.3 ptp_start

void ptp start (struct ptp info *ptp, int init);

Parameters |struct ptp info *ptp PTP instance.

int init Indication this is an initial call.
Return None.
Description This procedure starts the PTP system.

This procedure starts the PTP system in preparation for synchronization. It is called
subsequently to make sure the PTP configurations are correct.

if (sw->features & PTP_HW) {
struct ptp_info *ptp = &sw->ptp_hw;

ptp->reg->stop(ptp, true);

6.3.4 ptp_stop

void ptp stop (struct ptp info *ptp);

Parameters struct ptp info *ptp PTP instance.
Return None.
© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 34

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

Description This procedure stops the PTP system.

This procedure is used to stop the PTP system when the network driver is stopped. It is called by
the sw_stop function.

int reset = false;

if (sw->features & PTP_HW) {
struct ptp_info *ptp = &sw->ptp_hw;

reset = ptp->ops->stop(ptp);

6.3.5 ptp_set_identity

void ptp set identity (struct ptp info *ptp, u8 *addr);

Parameters struct ptp info *ptp PTP instance.
u8 *addr The host MAC address.
Return None.
Description This procedure sets the PTP identity..

This procedure is used to update the PTP identity when the host MAC address is changed. It is
used for debug purpose only.

if (sw->features & PTP_HW) {
struct ptp_info *ptp = &sw->ptp_hw;

ptp->ops->set_identity(ptp, dev->dev_addr);

6.3.6 check_ptp_msg

struct ptp msg *check ptp msg (u8 *data, ul6 **udp check ptr);

Parameters |u8 *data Received packet data.
ul6e **udp check ptr Buffer to store the UDP checksum pointer.
Return struct ptp_msg * Returned PTP message..
Description This function checks the packet for PTP
message.
© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 35

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

This function checks the packet for PTP message.

if (ptp->ops->check_msg(skb->data, NULL)) {
/* Do something for PTP message. */
}

6.3.7 update_ptp_msg

int update ptp msg (u8 *data, u32 port, u32 overrides);

Parameters |u8 *data Transmit packet data.
u32 port Destination ports.
u32 overrides Override flags.
Return int Indication this message should be blocked..
Description This function updates the PTP message for
proper destination ports.

This function updates the PTP message by changing the destination ports so that it is only sent to
open ports. If no port is open then the message will be dropped. This function is used inside the
sw_check tx function. It is only applicable for KSZ8463 switch.

void *ptr = NULL;

int (*update_msg)(u8 *data, u32 port, u32 overrides) = NULL;

if (sw->features & PTP_HW) {
struct ptp_info *ptp = &sw->ptp_hw;

ptr = ptp;
update_msg = ptp->ops->update_msg;
}
if (ptp) {
int blocked;
u32 dst = port;
u32 overrides = ptp->overrides;
if (!dst && ptp->version < 1)
dst = 3;
if (ptp->features & PTP_PDELAY_HACK) {
dst |= (u32) sw->tx_ports << 16;
overrides |= PTP_UPDATE_DST_PORT;
¥
blocked = update_msg(skb->data, dst, overrides);
if (blocked) {
dev_kfree_skb_irq(skb);
return NULL;
}
© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 36

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

6.3.8 get_rx_tstamp

void get rx tstamp (void *ptr, struct sk buff *skb);

Parameters |void *ptr PTP instance.
struct sk buff *skb Receive socket buffer.
Return None.
Description This procedure returns the PTP receive
timestamp using standard Linux timestamping
APL

This procedure is used to return the PTP receive timestamp to the kernel using standard Linux
timestamping APIL.

if (ptp_tag && (ptp->rx_en & 1))
ptp->ops->get_rx_tstamp(ptp, skb);

6.3.9 get_tx_tstamp

void get tx tstamp (struct ptp info *ptp, struct sk buff *skb);

Parameters struct ptp info *ptp PTP instance.
struct sk buff *skb Transmit socket buffer.
Return None.
Description This procedure returns the PTP transmit
timestamp using standard Linux timestamping
APL

This procedure is used to return the PTP transmit timestamp to the kernel using standard Linux
timestamping API..

if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
ptp->ops->get_tx_tstamp(ptp, skb);

6.3.10 hwtstamp_ioctl

int ptp hwtstamp ioctl (struct ptp info *ptp, struct ifreq

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 37

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

*ifr);
Parameters |struct ptp info *ptp PTP instance.
struct ifreqg *ifr Network interface request.
Return int Error code.
Description This function handles Linux timestamping
calls.

This function is used to handle Linux timestamping calls to setup receive and transmit timestamp
operation.

switch (cmd) {
case SIOCSHWTSTAMP:
result = -EOPNOTSUPP;
if (sw->features & PTP_HW)
result = ptp->ops->hwtstamp_ioctl(ptp, ifr);
break;

6.3.11 ptp_dev_req

int ptp dev req (struct ptp info *ptp, char *arg, struct
ptp dev _info *info);

Parameters struct ptp info *ptp PTP instance.
char *arg The host MAC address.
struct ptp_dev_info *info |PTP device information pointer.
Return int Error code.
Description This function handles PTP calls from
applications..

This function is used to handle PTP calls from applications to execute PTP commands. A set of
Micrel PTP APIs was implemented to provide PTP functionality for the applications.

switch (cmd) {
case SIOCDEVPRIVATE + 15:
result = -EOPNOTSUPP;
if (sw->features & PTP_HW)
result = ptp->ops->dev_req(ptp, ifr->ifr_data, NULL);
break;

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 38

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

6.3.12 proc_ptp_intr

void proc ptp intr (struct ptp info *ptp);

Parameters struct ptp info *ptp PTP instance.

Return None.

Description This procedure processes PTP related
interrupts.

This procedure is used to process interrupts related to PTP operation. It is called inside the
switch interrupt handling routine.

if (ptp->started)
ptp->ops->proc_intr(ptp);

6.3.13 ptp_drop_pkt

int ptp drop pkt (struct ptp info *ptp, struct sk buff *skb, u32
vlan id, int *tag, int *ptp tag);

Parameters struct ptp info *ptp PTP instance.
struct sk _buff *skb Receive socket buffer.
u32 vlan id VLAN IDs defined for use with PTP.
int *tag Buffer to hold the port tag.
int *ptp tag Buffer to hold the PTP tag.
Return None.
Description This function checks the receive packet for
PTP message and returns indication to drop it if
necessary.

This functions checks the receive packet for PTP message and may returns an indication to drop
it if necessary. The tag may hold the receiving port if tail tag is not actually used. It will be reset
if the VLAN IDs do not match the receiving port. The ptp_tag may be non-zero to indicate it is a
PTP message.

The get rx tstamp call is called inside this function if that timestamp function is enabled.
The rx_tstamp variable is also set to this function in case the packet is copied to forward to
another network device.

The forward rule will be set to forward packet to VLAN device and main device. Note this rule
will be overwritten by the sw_stp rx call if STP is enabled.

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA * (408) 944-0480 * http://www.micrel.com

Page 39

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

int tag = 9;
int ptp_tag = ©;

if (sw->features & PTP_HW) {
if (ptp->ops->drop_pkt(ptp, skb, sw->vlan_id, &tag, &ptp_tag)) {
dev_kfree_skb_irq(skb);
return 0;

}
if (ptp_tag) {
rx_tstamp = ptp->ops->get_rx_tstamp;
if (!forward)
forward = FWD_VLAN_DEV | FWD_MAIN_DEV;

6.3.14 get_rx_info

void ptp get rx info (struct ptp info *ptp, u8 *data, u8 port,
u32 timestamp);

Parameters struct ptp info *ptp PTP instance.
u8 *data Receive PTP message.
u8 port Receive port.
u32 timestamp Receive timestamp.
Return None.
Description This procedure keeps track of receive PTP
message information.

This procedure provides the receive port and timestamp retrieved from the tail tag to the PTP
driver for it to keep track of PTP messages. It is called from the ptp drop pkt function.

This is only applicable for KSZ956X switches as the procedure also provides backward
compatibility for PTP stacks which use the reserved fields in the PTP header required for
KSZ8463 switch..

*ptp_tag = sw->tag.ports & ~0x80;
ptp->ops->get_rx_info(ptp, skb->data, *ptp_tag, sw->tag.timestamp);

6.3.15 set_tx_info

void ptp set tx info (struct ptp info *ptp, u8 *data, void
*tag)i

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 40

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

Parameters struct ptp info *ptp PTP instance.
u8 *data Transmit PTP message.
void *tag Tail tag pointer.
Return None.
Description This procedure updates the tail tag when
sending PTP message..

This procedure updates the tail tag when sending PTP message. It is primarily used for putting
in the receive timestamp of Pdelay Req message when sending the 1-step Pdelay Resp message.
It is also used for backward compatibility for PTP stacks which use the reserved fields in the PTP
header required for KSZ8463 switch. As such this is only applicable for KSZ956X switches.
tx_tag.ports = sw->TAIL_TAG_LOOKUP;
tx_tag.timestamp = 0O,
if (ptp)

ptp->ops->set_tx_info(ptp, skb->data, *ptp_tag, &tx_tag);

6.3.16 init_ptp_sysfs

int init ptp sysfs (struct ksz ptp sysfs *info, struct device
*dev) ;

Parameters struct ksz ptp sysfs *info |PTP Sysfs instance.
struct device *dev Device pointer.
Return int Error code.
Description This function setup the PTP Sysfs variables..

This function is used to setup the PTP Sysfs variables so that some internal flags can be accessed
from user space. The ksz ptp sysfs structure needs to be defined somewhere, as there can
be more than 1 instance. The device used can be network, SPI, or 12C device.

err = init_ptp_sysfs(&ptp_sysfs, &dev->dev);

6.3.17 exit_ptp_sysfs

void exitt ptp sysfs (struct ksz ptp sysfs *info, struct device
*dev);

Parameters | struct ksz ptp sysfs *info |PTP Sysfs instance.

struct device *dev Device pointer.

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA * (408) 944-0480 * http://www.micrel.com
Page 41

http://www.micrel.com/

ml EREL Micrel Switch Usage Guide

Return None.
Description This function removes the PTP Sysfs
variables..

This procedure is used to remove the PTP Sysfs variables when the network driver exits.

exit_ptp_sysfs(&ptp_sysfs, &dev->dev);

7 Hardware Limitations

There are some hardware bugs in the Micrel switches related to PTP message forwarding. The
software driver needs to some hacks to workaround the problems. That causes the code to be
less clean and orderly.

There is a requirement that PTP peer delay messages like Pdelay Req, Pdelay Resp, and
Pdelay Resp Follow Up need to pass through a closed port. However, if the destination port
field in the PTP message is set the message will go through a closed port no matter what. The
driver has to watch out for those cases and modify those PTP messages accordingly or
completely discard them to avoid sending a PTP Sync message through a closed port. This is
only applicable for KSZ8463 switch.

Most of the Micrel switches has only 8 entries in the static MAC table. At least 4 are used for
regular STP implementation. More may be required in certain situations. In that case the
packets cannot be filtered at the host port completely and the network driver needs to do more
work.

8 RSTP Daemon

The Linux kernel supports STP completely but not RSTP, which requires a separate user
application running as a daemon. A bridge utility called brctl can be used to setup a bridge and
link several network devices into it. For RSTP operation there is a script called bridge-stp
that will be called by the kernel when the bridge is turned on. If the script invocation is
successful the kernel assumes there is a RSTP daemon processing RSTP traffic, otherwise the
kernel assumes STP is used and takes over its operation.

There are several RSTP daemons available. The one Micrel used is retrieved from
https://github.com/shemminger/RSTP. This daemon has three components: rstpd, the
daemon itself; rstpctl, the RSTP control utility; and bridge-stp, the standard Linux bridge
script file to setup the daemon.

The RSTP daemon rstpd intercepts all STP frames received from all STP ports to determine

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA * (408) 944-0480 * http://www.micrel.com

Page 42

http://www.micrel.com/
https://github.com/shemminger/RSTP
https://github.com/shemminger/RSTP

ml :ﬂEL Micrel Switch Usage Guide

which one needs to shut off. It puts the ports in one of the three states—blocked, learning, or
forwarding—and communicates this to the Linux kernel. The last STP state, disabled, is set if
the link connection is lost.

The RSTP utility rstpctl is used to display the STP bridge and port information. One of the
commands is showportdetail, which reveals whether the port is designated and forwarding,
root and forwarding, or alternate and discarding.

rstpctl showportdetail bro

The order to setup the RSTP daemon is

rstpd

ifconfig etho 0.0.0.0
ifconfig ethl 0.0.0.0
sleep 1

brctl addbr bre

brctl addif bro ethe
brctl addif bre ethl
ifconfig bro 0.0.0.0
brctl stp bre on
rstpctl rstp bre on

Generally the RSTP daemon is turned on inside the bridge-stp script which is invoked by the
kernel when the STP bridge is turned on with the “brctl stp bre@ on” command. However,
there is a problem doing that and so that script was changed and the daemon needs to be
manually turned on with the “rstpctl rstp br@® on” command.

© 2014 Micrel, Inc. Confidential Rev 1.0
2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com

Page 43

http://www.micrel.com/

ml:ﬂEL Micrel Switch Usage Guide

Alphabetical Index

Distributed Switch Architecture (DSA)................. 6 PTP.ieee e 6,27,42
Precision Time Protocol (PTP).......ccccveevvevvieeennns 6 RSTP..eeeeee e, 42,43
© 2014 Micrel, Inc. Confidential Rev 1.0

2180 Fortune Dr., San Jose, CA 95131, USA ¢ (408) 944-0480 * http://www.micrel.com
Page 44

http://www.micrel.com/

	1 Revision History
	2 Introduction
	3 Overview
	4 Software Driver Implementation
	4.1 Distributed Switch Architecture

	5 Host Network Driver Modifications
	6 Switch APIs
	6.1 Data Structures and Definitions
	6.2 Switch Functions
	6.2.1 sw_setup_special
	6.2.2 sw_setup_dev
	6.2.3 sw_start
	6.2.4 sw_stop
	6.2.5 sw_open_dev
	6.2.6 sw_open_port
	6.2.7 sw_close_port
	6.2.8 sw_open
	6.2.9 sw_close
	6.2.10 sw_set_mac_addr
	6.2.11 sw_get_tx_len
	6.2.12 sw_add_tail_tag
	6.2.13 sw_get_tail_tag
	6.2.14 sw_check_tx
	6.2.15 sw_final_skb
	6.2.16 sw_rx_dev
	6.2.17 sw_match_pkt
	6.2.18 sw_parent_rx
	6.2.19 sw_port_vlan_rx
	6.2.20 get_port_state
	6.2.21 sw_get_priv_state
	6.2.22 sw_set_priv_state
	6.2.23 sw_set_multi
	6.2.24 sw_stp_rx
	6.2.25 sw_blocked_rx
	6.2.26 monitor_ports
	6.2.27 init_sw_sysfs
	6.2.28 exit_sw_sysfs

	6.3 PTP Functions
	6.3.1 ptp_init
	6.3.2 ptp_exit
	6.3.3 ptp_start
	6.3.4 ptp_stop
	6.3.5 ptp_set_identity
	6.3.6 check_ptp_msg
	6.3.7 update_ptp_msg
	6.3.8 get_rx_tstamp
	6.3.9 get_tx_tstamp
	6.3.10 hwtstamp_ioctl
	6.3.11 ptp_dev_req
	6.3.12 proc_ptp_intr
	6.3.13 ptp_drop_pkt
	6.3.14 get_rx_info
	6.3.15 set_tx_info
	6.3.16 init_ptp_sysfs
	6.3.17 exit_ptp_sysfs

	7 Hardware Limitations
	8 RSTP Daemon

